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ABSTRACT

Context. The evolution of Alfvén waves in cylindrical magnetic flux tubes, which represent a basic model for loops observed in the
solar corona, can be affected by phase mixing and turbulent cascade. Phase mixing results from transverse inhomogeneities in the
Alfvén speed, causing different shells of the flux tube to oscillate at different frequencies, thus forming increasingly smaller spatial
scales in the direction perpendicular to the guide field. Turbulent cascade also contributes to the dissipation of the bulk energy of the
waves through the generation of smaller spatial scales. Both processes present characteristic time scales. Different regimes can be
envisaged according to how those time scales are related and to the typical time scale at which dissipation is at work.
Aims. We investigate the interplay of phase mixing and the nonlinear turbulent cascade in the evolution and dissipation of Alfvén
waves using compressible magnetohydrodynamics numerical simulations. We consider perturbations in the form of torsional waves,
both propagating and standing, or turbulent fluctuations, or a combination of the two. The main purpose is to study how phase mixing
and nonlinear couplings jointly work to produce small scales in different regimes.
Methods. We conduct a numerical campaign to explore the typical parameters as the loop length, the amplitude and spatial profile of
the perturbations, and the dissipative coefficients. A pseudo-spectral code is employed to solve the three-dimensional compressible
magnetohydrodynamic equations, modeling the evolution of perturbations propagating in a flux tube corresponding to an equilibrium
configuration with cylindrical symmetry.
Results. We find that phase mixing takes place for moderate amplitudes of the turbulent component even in a distorted, non-
axisymmetric configuration, building small scales that are locally transverse to the density gradient. The dissipative time decreases
with increasing the percentage of the turbulent component. This behavior is verified both for propagating and standing waves. Even
in the fully turbulent case, a mechanism qualitatively similar to phase mixing occurs: it actively generates small scales together with
the nonlinear cascade, thus providing the shortest dissipative time. General considerations are given to identify this regime in the
parameter space. The turbulent perturbation also distorts the background density, locally increasing the Alfvén velocity gradient and
further contributing to accelerating the formation of small scales.
Conclusions. Our campaign of simulations is relevant for the coronal plasma where Reynolds and Lundquist numbers are extremely
high. For sufficiently low perturbations’ amplitude, phase mixing and turbulence work synergically, speeding up the dissipation of the
perturbation energy: phase mixing dominates at early times and nonlinear effects at later times. We find that the dissipative time is
shorter than those of phase mixing and the nonlinear cascade when individually considered.
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1. Introduction

The dissipation of waves in the solar corona is considered one of
the viable mechanisms that can explain the heating of the coronal
plasma, a long-standing, not fully solved problem. Photospheric
motions would generate such waves, which propagate upward to
the corona along the magnetic field connecting different layers of
the solar atmosphere, eventually dissipating within the corona.

There is much observational evidence of the presence of dif-
ferent wave modes in the corona, starting from early observa-
tions of nonthermal broadening of coronal lines (Feldman et al.
1988; Dere & Mason 1993), detection of slow magnetohydrody-
namic (MHD) waves (Chae et al. 1998; Ofman et al. 1999) and
of transverse oscillations in post-flare loops (Nakariakov et al.
1999; Schrijver et al. 1999; Aschwanden et al. 1999). More re-
cently, the excitation of standing kink oscillations in coronal

loops has been studied (e.g., Zimovets & Nakariakov 2015; God-
dard et al. 2016) that could be excited by coronal impulsive
events through a variety of mechanisms (see also Nakariakov
et al. (2021) for a recent review). While the above oscillations
are subject to damping within a few wave periods, other oscil-
lations have been detected mainly in quiet loops, with no ap-
parent damping for many periods or even with temporary grow-
ing amplitude (Wang et al. 2012; Tian et al. 2012; Nisticò et al.
2013). Waveperiod scaling linearly with the loop length indicates
that those decayless oscillations are standing waves (Anfinogen-
tov et al. 2015). Decayless oscillations could be driven by the
interaction between loops and quasi-steady flows (Nakariakov
et al. 2016), or by continuous footpoint driving (Karampelas
et al. 2017, 2019; Guo et al. 2019; Afanasyev et al. 2020). More-
over, it has been proposed that they could be related to Kelvin-
Helmholtz (KH) rolls induced by transverse loop oscillations
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(Antolin et al. 2016). In addition, the ubiquitous presence of
propagating, mainly-transverse waves has been revealed by both
ground-based (CoMP, Tomczyk et al. (2007); Tomczyk & McIn-
tosh (2009)) and space-based (AIA, on board of SDO (McIn-
tosh et al. 2011; Lemen et al. 2012)) observations, with a domi-
nance of outward to inward wave power (Tomczyk & McIntosh
2009). Those oscillations have been interpreted as Alfvén waves,
though it has also been proposed that they could be fast-mode
kink waves propagating in cylindrical structures (Van Doorsse-
laere et al. 2008). Their ubiquity seems to indicate a possible role
in coronal heating.

From a theoretical point of view, wave dissipation in the
coronal plasma represents a non-trivial problem. The Reynolds
and Lundquist numbers are estimated to be extremely large in
the solar corona. This implies that a wave can be efficiently dissi-
pated only if its energy is transferred to fluctuations at very small
spatial scales. Such a process could require a very long dissipa-
tive time, which could be much longer than the coronal cooling
timescale. The presence of inhomogeneities in the background
structures can speed up the formation of small scales. In particu-
lar, when a transverse gradient of the Alfvén velocity is present,
Alfvén waves are subject to phase mixing (Heyvaerts & Priest
1983). During phase mixing, wavefronts are bent due to differ-
ences in their propagation velocity on nearby field lines. This re-
sults in a progressive generation of increasingly small scales in
the direction transverse to the background magnetic field. Phase
mixing has been extensively studied both by following a normal-
mode approach (Steinolfson 1985; Califano et al. 1990, 1992)
and by considering the evolution of an initial disturbance (Lee
& Roberts 1986; Malara et al. 1992, 1996). Effects of density
stratification and magnetic line divergence have also been con-
sidered (Ruderman et al. 1998), as well as nonlinear coupling
with compressive modes (Nakariakov et al. 1997, 1998). Phase
mixing in 3D configurations in the small wavelength limit has
been studied (Petkaki et al. 1998; Malara et al. 2000), also in
simplified models of quiet-Sun (Malara et al. 2003, 2005, 2007)
or open fieldline (Malara 2013; Pucci et al. 2014) regions. It has
also been shown that phase mixing is active in loops with a ra-
dial density inhomogeneity when azimuthally-polarized Alfvén
waves are excited by coupling with kink modes (Pagano & De
Moortel 2017).

Torsional Alfvén waves represent one possible oscillating
mode in a cylindrically symmetric structure with an axial mag-
netic field; they represent particular azimuthally polarized waves
where fluctuations do not depend on the azimuthal angle θ. They
are non-compressive and are analogous to shear Alfvén waves
in slab geometry. Their evolution is only due to phase mix-
ing, except for large amplitudes when nonlinear effects come
into play. Therefore, in studying phase mixing, torsional Alfvén
waves represent the most suitable case to be considered. Such
waves could be excited by torsional motions at the loop bases.
Indeed, this kind of motion has been revealed in the lower lay-
ers of the solar atmosphere. In the photosphere, vortical motions
seem to be related to convection (Brandt et al. 1988), mainly lo-
cated at the downdrafts where the plasma returns to the solar in-
terior after cooling down (Bonet et al. 2008, 2010). Small-scale
swirl events have been revealed in the quiet-Sun chromosphere
(Wedemeyer-Böhm & Rouppe van der Voort 2009; Tziotziou
et al. 2018), as well as rapidly-rotating magnetic structures, ubiq-
uitously distributed in the transition region (Wedemeyer-Böhm
et al. 2012). Automated detection of chromospheric swirls has
been recently performed (Dakanalis et al. 2022), finding a mean
lifetime 3.4 min with typical diameter 1 to 1.5 Mm and about
40% of the analyzed surface covered by swirls. Torsional waves

have been detected in magnetic funnels, with an oscillation pe-
riod of 126−700 s (Jess et al. 2009). An investigation of a small-
scale chromospheric tornado (Tziotziou et al. 2020) has sug-
gested the existence of waves propagating upwards with phase
speeds of ∼ 20−30 km/s, in the form of both kink modes and lo-
calized Alfvénic torsional waves. Numerical simulations of tor-
sional waves in the magnetic field of a chromospheric funnel
have been performed to study frequency filtering (Fedun et al.
2011). Moreover, the presence of Alfvén waves has been de-
tected in simulations of photospheric vortexes (Shelyag et al.
2013).

Beside phase mixing, turbulence represents an alternative
way of generating small scales in a magnetofluid. Turbulence
in the solar wind has been characterized using a huge number of
in-situ measurements for many decades (see, e.g., Bruno & Car-
bone (2013) for a review). Recent direct measurements of tur-
bulence have been performed by Parker Solar Probe spacecraft
in the most external solar corona where the wind is still sub-
sonic/sub-Alfvénic (Kasper et al. 2021; Bandyopadhyay et al.
2022; Zhao et al. 2022). Moreover, indirect indications exist
of turbulent fluctuations in the corona. In particular, the non-
thermal broadening of coronal spectral lines could be indica-
tive of turbulent fluctuations (Banerjee et al. 1998; Singh et al.
2006; Hahn & Savin 2013, 2014), as well as a f −1 frequency
spectrum found in CoMP observations of loops (Morton et al.
2016, 2019). At variance with phase mixing where a mode cou-
ples with the inhomogeneity of the background structure, in
turbulence the generation of small scales is due to nonlinear
coupling between fluctuations. This typically generates power-
law spectra in the wave number space. Similar to phase mix-
ing, the magnetohydrodynamic (MHD) turbulent cascade pref-
erentially generates small scales in the direction perpendicular
to the background magnetic field. This especially holds in the
case of a strong magnetic field (low plasma β), as in the case
of the coronal plasma (Shebalin et al. 1983). In Alfvénic tur-
bulence, nonlinear couplings occur between fluctuations prop-
agating in opposite senses. This situation can be easily envi-
sioned in closed magnetic structures like loops. However, even
in open-fieldline regions, partial wave reflection due to longi-
tudinal inhomogeneities can give rise to opposite-propagating
fluctuations and a consequent activation of a nonlinear cascade.
Models of coronal heating based on turbulence have been for-
mulated for coronal loops (Van Ballegooijen et al. 2011; Downs
et al. 2016; van Ballegooijen et al. 2017; Van Ballegooijen &
Asgari-Targhi 2018; Rappazzo et al. 2017), as well as for open
structures (Verdini et al. 2009; Perez & Chandran 2013; Woolsey
& Cranmer 2015; Chandran & Perez 2019). Hybrid shell mod-
els are simplified turbulence models based on reduced MHD and
hold for a low-β plasma dominated by nearly transverse non-
compressive fluctuations. They have been applied to the heating
of coronal loops (Nigro et al. 2004; Nigro et al. 2005; Reale
et al. 2005; Buchlin & Velli 2007), as well as to characterize the
nonlinear energy spectral flux (Nigro et al. 2004; Malara et al.
2010). Such models reproduce power-law frequency spectra (Ni-
gro et al. 2020) similar to those observed in the corona (Tomczyk
& McIntosh 2009; McIntosh et al. 2011; Morton et al. 2016)

A situation where both phase mixing and turbulence are ac-
tive is when an initial standing kink mode resonantly couples
with Alfvénic oscillations located at the interface between the
loop interior and exterior. The spatial variation of the Alfvén ve-
locity at the interface generates phase mixing in the Alfvénic
azimuthal oscillation, giving origin to a KH instability. The final
result is a turbulent state in the interface region that eventually
leads to wave energy dissipation. This scenario has been studied
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in great detail (Terradas et al. 2008; Antolin et al. 2014; Magyar
et al. 2015; Antolin & Van Doorsselaere 2019), also in compari-
son with observations (Antolin et al. 2017), pointing out the role
played by KH rolls in enhancing dissipation, as well as in the
formation of fine strand-like structures (Antolin et al. 2014).

Finally, it has been shown that in a plasma with transverse
inhomogeneities phase mixing can result in a phenomenology
resembling that of turbulence also in the case in which uni-
directional waves are present (Magyar et al. 2017, 2019).

The present paper is devoted to studying the interplay be-
tween phase mixing and turbulence in the generation of small
scales and consequent wave dissipation in a simple model of a
coronal loop. Since we are interested in selecting the effects of
phase mixing, we will consider torsional modes with a possi-
ble superposition of turbulent perturbation here, excluding other
more complex situations such as kink modes. We will show that
the simultaneous presence of phase mixing and turbulent cascade
can act in a synergistic way, such as to reinforce both effects.
This can lead to an efficient dissipation, even in situations where
small amplitude waves propagate in weakly dissipative plasma,
as for the solar corona.

The plan of the paper is the following. An overview of the
model is presented in Sect. 2, where we report some relevant
scaling laws in Sect. 2.1 and the physical model we aim to de-
scribe in Sects. 2.3–2.5. In Sect. 3, we report our numerical re-
sults. We first focus on the purely Alfvén wave perturbations in
Sect. 3.1 and on the turbulence in a homogeneous background
in Sect. 3.2, moving to the combined case in Sect. 3.3, both for
propagating and standing waves. Finally, in Sect. 4 we discuss
our results and its implications.

2. Model

We aim to model a situation where transverse fluctuations prop-
agate and evolve inside a coronal loop characterized by a trans-
verse inhomogeneity. We are interested in studying how the cou-
pling between background inhomogeneity and fluctuations and
nonlinear couplings among fluctuations lead to the formation of
small-scale fluctuations and eventually to their dissipation. As
described below, the loop is modeled as a straight magnetic flux
tube with a cylindrical symmetry (at the initial time) where the
density in the inner part of the loop is larger than in the outer part,
while the magnetic field is axially directed and nearly uniform,
due to a low plasma-β. This results in a transverse modulation of
the Alfvén velocity cA(r) = B(r)/

√
4πρ(r), where r is the radial

coordinate with respect to the loop axis, as it can be appreci-
ated in Fig. 1. Different kinds of fluctuations will be considered,
namely, (i) torsional Alfvén waves, (ii) turbulent transverse fluc-
tuations, and (iii) a superposition of (i) and (ii).

2.1. Phenomenology and scaling laws

Prior to describing the model and its results, we discuss some
general results concerning wave dynamics in the considered sit-
uation and their implication for our model.

When an Alfvénic fluctuation propagates in a plasma with a
transverse inhomogeneous Alfvén velocity, it is subject to phase
mixing that progressively generates small scales perpendicularly
to the background magnetic field B0 (e.g., Heyvaerts & Priest
1983). We indicate by k⊥ and k|| the wavevector components per-
pendicular and parallel to B0, respectively. During phase mixing
k|| remains constant: k|| = k||0, while k⊥ linearly increases with

time t, according to:

k⊥(t) ∼ k||0
dcA

dr
t (1)

where dcA/dr is a typical value for the transverse gradient of the
Alfvén velocity. For simplicity, in Eq. (1) we have assumed that
k⊥(t = 0) = 0. Following Eq. 1, we define the phase-mixing
dynamical time tPM(k⊥) as

tPM(k⊥) ∼
k⊥
k||0

(
dcA

dr

)−1

(2)

which is also the time that is needed for a given perpendicular
wavevector k⊥ to double. The stronger the transverse gradient
of the Alfvén speed, the faster phase mixing. Moreover, tPM in-
creases with increasing k⊥. Therefore, as a mechanism able to
generate small scales, phase mixing becomes progressively less
efficient with increasing the fluctuation wavevector.

Indicating by ℓd ∼ k−1
⊥d the dissipation length and with k⊥d

the corresponding perpendicular wavevector, we define the dis-
sipative time tPM

d as the time phase mixing takes to increase k⊥(t)
up to k⊥d. Using Eq. (1) we obtain:

tPM
d ∼

k⊥d

k||0

(
dcA

dr

)−1

∼
L||
ℓd

(
dcA

dr

)−1

(3)

where we have assumed that the initial parallel wavelength is
of the order of the loop length L||. The above expression can be
normalized to a typical time scale tA = L⊥/cA0, where L⊥ is the
loop width and cA0 is the mean Alfvén velocity. We obtain:

tPM
d

tA
∼

cA0

ℓd

(
dcA

dr

)−1 L||
L⊥

(4)

where Λ = L||/L⊥ is the loop aspect ratio. To give an order-of-
magnitude estimation for the ratio (4, we assume that the density
inside the loop is a factor 2 larger than outside and the magnetic
field is nearly uniform as set in our numerical model (see Fig. 1).
Therefore, the Alfvén velocity has a relative variation of about
25% from inside to outside the loop. We also assume that cA
varies over a scale ∆r ∼ L⊥/10, with L⊥ ∼ 103 km and a loop
aspect ratio L||/L⊥ ∼ 30. In the coronal plasma, the Lundquist
number is extremely high and dissipation is probably due to ki-
netic effects; therefore, we consider a dissipation length of the
order of proton Larmor radius ℓd ∼ 10−3 km. Using those val-
ues, we obtain an estimation for the normalized phase-mixing
dissipative time: tPM

d /tA ∼ 107. Such a large value indicates that
phase mixing alone is inefficient in dissipating Alfvén waves, at
least in the simple situation here considered.

Another possible dissipative mechanism is represented by
a turbulent cascade, where fluctuating energy is transferred to
smaller scales by nonlinear couplings. In MHD, the turbulent
cascade mainly takes place perpendicular to the background
magnetic field (e.g., Shebalin et al. 1983), and such effect is even
stronger in the low-β coronal plasma. Since the turbulent cas-
cade can virtually generate indefinitely small scales in a finite
time, the dissipative time is larger but of the order of the nonlin-
ear time tNL(ℓ⊥0), where ℓ⊥0 is the large energy-containing scale
of fluctuations. Namely:

tturb
d ∼ ΓtNL(ℓ⊥0) = Γ

ℓ⊥0

cA0

B0

δB(ℓ⊥0)
(5)
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where δB(ℓ⊥0) is the amplitude of magnetic field fluctuation at
the scale ℓ⊥0, cA0 is the mean Alfvén speed and Γ is a numerical
factor of the order of a few units. Normalized to tA, it is:

tturb
d

tA
∼ Γ
ℓ⊥0

L⊥

B0

δB(ℓ⊥0)
(6)

We notice that the dissipative time increases with decreasing
fluctuations’ amplitude δB. Assuming that the largest scale in
fluctuation is of the order of the loop width: ℓ⊥0 ∼ L⊥ and a nor-
malized fluctuation amplitude δB/B0 ∼ 10−2, we obtain for the
normalized dissipative time: tturb

d /tA ∼ 100Γ. This value is many
orders of magnitude smaller than the above estimation made for
the phase-mixing case. Therefore, in a high Reynolds/Lundquist
plasma, as in the corona, turbulence is more efficient than phase
mixing to dissipate fluctuations, even for small-amplitude fluc-
tuations.

However, the above picture could change in a more real-
istic case where turbulence evolves inside an inhomogeneous
background, such as a coronal loop. In such a case, besides
nonlinear effects driving the turbulent cascade, the coupling be-
tween the background inhomogeneity and fluctuations (that is at
the bases of phase mixing) also contributes to generating small
scales. Therefore, it can be expected that in such a configuration
phase mixing and nonlinear effects work together to promote
small-scale generation and speed-up dissipation. In particular,
let us imagine a situation where, at the initial time, the fluctu-
ation amplitude at large scale δB(ℓ⊥0) is small enough to have
tPM(ℓ⊥0) < tturb

d . Using Eq.s (2) and (5) this condition can be
expressed by:

δB
B0
<

dcA

dr
ℓ2
⊥0

L∥

Γ

cA0
. (7)

where δB ≡ δB(ℓ⊥0). In such a case, at an early stage of the time
evolution phase, mixing would proceed faster than nonlinear ef-
fects to generate small scales. Moreover, phase mixing leaves
the fluctuation amplitude δB(ℓ⊥) unchanged as ℓ⊥ decreases.
Therefore, as ℓ⊥ decreases in time, tNL(ℓ⊥) will proportionally
decrease, too. Hence, at a time t∗ and at a corresponding scale
ℓ∗⊥, the situation will be reversed, namely, tturb

d (ℓ⊥) < tPM(ℓ⊥) for
ℓ⊥ < ℓ

∗
⊥. From that time on, nonlinear effects become the faster

mechanism producing small scales and the cascade will bring en-
ergy to dissipative scales in a time ≳ tturb

d (ℓ∗⊥), which is smaller
than the initial tturb

d . In this scenario, the two considered mech-
anisms work in a synergistic way: phase mixing dominates at
early times (t ≲ t∗) and nonlinear cascade at later times (t ≳ t∗).
The result is a dissipative time that is shorter than those of phase
mixing and of the nonlinear cascade when individually consid-
ered.

In what follows, we will explore the above ideas from a quan-
titative point of view by means of numerical simulations.

2.2. MHD equations and the numerical method

To describe the evolution of perturbations in the coronal plasma
we use the compressible MHD equations that are written in the

following form, using dimensionless quantities:

∂ρ

∂t
= −∇ · (ρv) , (8)

∂v
∂t

= − (v · ∇) v +
1
ρ

[(∇ × B) × B] −

β

2ρ
∇ (ρT ) − ν4∇4v, (9)

∂A
∂t

= v × B − η4∇
4 A, (10)

∂T
∂t

= − (v · ∇) T − (γ − 1) (∇ · v) T − χ4∇
4T. (11)

Here, ρ is the density normalized to a typical value ρ̃; B is the
magnetic field normalized to a typical value B̃; A is the vector
potential normalized to ℓ̃B̃, with ℓ̃ a typical length; A is related
to B through B = ∇ × A; v is the magnetofluid velocity nor-
malized to the typical Alfvén velocity c̃A = B̃/

[
(4πρ̃)1/2

]
; T is

the temperature normalized to a typical value T̃ ; γ is the adia-
batic index. Spatial coordinates x, y and z are normalized to ℓ̃
and time is normalized to the Alfvén time ℓ̃/c̃A. The coefficient
β is the plasma beta, defined as the ratio between the typical ki-
netic and the magnetic pressure, β = 8πκBρ̃T̃/(µmpB̃2), with κB
the Boltzmann constant, µ the mean atomic weight and mp the
proton mass. In the coronal plasma, it is typically β ≪ 1; we
used the value β = 0.05. In code units, the plasma pressure is
given by P = βρT/2.

Compressibility is included in the model. Indeed, as dis-
cussed, for instance, in (Malara et al. 1996), the production of
small scales necessary for the occurrence of dissipation is more
effective in a compressible medium rather than in an incompress-
ible one. The energy equation (11) expresses the adiabaticity
condition (except for the thermal hyper-diffusivity, see below).
In fact, since we are interested in describing the route to energy
dissipation rather than dissipation itself, we use the simplified
energy equation (11) where effects such as radiative losses are
neglected. Integrating Eq. (10), which describes the time evo-
lution of the vector potential A instead of the magnetic field B
guarantees ∇ · B = 0. Moreover, a logarithmic regularization
to the density is used; namely, we set ρ = eg, and solve the
equivalent equation for g with the purpose of a better description
of possible discontinuities and shocks. Hyper-dissipation is im-
plemented through the last terms in Eq.s (9)–(11) representing
hyper-viscosity, hyper-resistivity and hyper thermal diffusivity,
respectively, with ν4, η4 and χ4 the corresponding coefficients.
These terms have been introduced to dissipate the turbulent cas-
cade at small scales and control numerical stability; they do not
mimic any physical process. With respect to standard dissipa-
tion, hyper-dissipation allows one to obtain more extended fluc-
tuation spectra, keeping numerical stability.

Eq.s (8)–(11) are solved in a 3D Cartesian domain with peri-
odicity boundary conditions along the three space directions x, y,
and z. In particular, z represents the direction of the background
magnetic field B0. The 3D Cartesian domain D in normalized
units is defined as

D = {x, y, z} = [0 : L] × [0 : L] × [0 : ΛL],

with L = 2π. Throughout the paper, we will indicate the domain
size perpendicular to B0 by L, and the parallel size by ΛL = L∥,
where Λ = L∥/L is a free parameter that represents the domain
aspect ratio.

To solve Eq.s (8)-(11) in 3D configurations, we used
the “COmpressible Hall Magnetohydrodynamics simulator for
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Plasma Astrophysics” (COHMPA) algorithm with the Hall term
switched off. A pseudo-spectral algorithm is used, which adopts
a second-order Runge-Kutta scheme to advance in time the
MHD variables. In the physical domain D all quantities are
calculated on a regular grid formed by N⊥ × N⊥ × N|| grid
points:

(
xi, y j, zl

)
=

(
iL/N⊥, jL/N⊥, lΛL/N||

)
, with i, j, l integers,

0 ≤ i, j ≤ N⊥ − 1 and 0 ≤ l ≤ N|| − 1. In all numerical runs, we
used N⊥ ≥ N||. Correspondingly, a discrete set of wavevectors is
defined in the spectral space: k =

(
2πnx/L, 2πny/L, 2πnz/(ΛL)

)
,

with nx, ny, nz integers, 0 ≤ nx, ny ≤ N⊥/2 − 1 and 0 ≤ nz ≤

N||/2 − 1. A spectral filter is employed to suppress numeri-
cal artefacts due to aliasing (Orszag 1971; Meringolo & Ser-
vidio 2021), and a 2/3 rule is adopted where the spectral coef-
ficients of all quantities are set to zero at k = |k| > 2/3kN, with
kN = (2π/L)(N⊥/2 − 1) corresponding to the Nyquist frequency
(Canuto et al. 2007). A 2.5D version of this algorithm has al-
ready been adopted in literature (Vásconez et al. 2015; Perri et al.
2017; Pezzi et al. 2017). More recently, a fully 3D version of the
algorithm has been exploited by Pezzi et al. (2023).

The initial condition is given by the superposition of an
ideal (non-dissipative) MHD equilibrium and a perturbation. The
equilibrium represents a simplified model for a coronal loop.
The perturbation represents a torsional propagating or stand-
ing Alfvén wave, or a turbulent perturbation, or a combination
of both. The explicit forms of the equilibrium and the different
kinds of perturbation are given in the following.

2.3. Equilibrium: a cylindrical magnetic flux tube

The equilibrium is a structure with cylindrical symmetry around
an axis parallel to the z-axis. All quantities relative to the equi-
librium are indicated by the index "0". The magnetic field B0 =
B0(x, y) ẑ is directed along z, where ẑ is the unit vector in the z di-
rection. Magnetic lines have no curvature, and the Lorenz force
per volume unit reduces to the gradient of magnetic pressure.
Therefore, the equilibrium is sustained by the balance between
magnetic and plasma pressure, expressed by the following rela-
tion

B2
0(x, y)

2
+ P0(x, y) = const, (12)

where P0(x, y) = βρ0(x, y)T0/2 is the equilibrium plasma pres-
sure in dimensionless code units, ρ0(x, y) is the inhomogeneous
density and T0 is the temperature that is assumed to be uniform
in space. The inhomogeneities of equilibrium are transverse to
the guide field B0. We have chosen the following functional form
for the plasma pressure

P0(x, y) =
(Pint − Pext)

2

[
1 − tanh

( r − r0

∆r

)]
+ Pext. (13)

Here and in what follows, subscripts int and ext indicate values of
quantities in regions internal or external to the flux tube, respec-
tively. Moreover, (x0, y0) = (L/2, L/2) = (π, π) is the position of
the symmetry axis, r =

√
(x − x0)2 + (y − y0)2 is the distance of

a point from the symmetry axis, r0 = L/4 = π/2 is the radius of
the flux tube and ∆r = L/16 = π/8 is a parameter controlling the
width of the shear region separating the interior from the exterior
of the flux tube.

Equation (13) describes a cylindrically symmetric function.
On the other hand, the domain D is a parallelepiped with period-
icity boundary conditions. Even though the expression (13) for

Fig. 1. 1D profiles of the equilibrium quantities B0, cA, P0, and ρ0 as
functions of y, for x = L/2 and z = ΛL/2.

P0(x, y) is periodic on the boundaries of D, its derivatives normal
to the domain boundaries are not periodic, which could provoke
numerical problems. Therefore, we have modified the expression
for P0(x, y) so that all its first-order partial derivatives are peri-
odic. Indicating the original form of P0 (Eq. (13)) by Pold and
the corrected form by Pcorr, the two are related by:

Pcorr(x, y) = Pold(x, y) + a(y)
(
x −

L
2

)2

+ b(x)
(
y −

L
2

)2

. (14)

The functions a(y) and b(x) are chosen such as the first-order
normal derivatives of Pcorr are vanishing all along the domain
boundaries. This condition is verified by the following choice:

a(y) =
1
L
∂Pold

∂x
(0, y) +

1
2L2

(
y −

L
2

)2 ∂2Pold

∂x∂y
(0, 0) , (15)

b(x) =
1
L
∂Pold

∂y
(x, 0) +

1
2L2

(
x −

L
2

)2 ∂2Pold

∂x∂y
(0, 0) . (16)

Taking into account that

∂Pold

∂x
(0, y) = −

∂Pold

∂x
(L, y) ,

∂Pold

∂y
(x, 0) = −

∂Pold

∂y
(x, L), (17)

∂2Pold

∂y∂x
(0, y) = −

∂2Pold

∂y∂x
(L, y) ,

∂2Pold

∂x∂y
(x, 0) = −

∂2Pold

∂x∂y
(x, L),

(18)

it can be easily checked that (∂Pcorr/∂x)(0, y) = (∂Pcorr/∂x)(L, y)
and (∂Pcorr/∂y)(x, 0) = (∂Pcorr/∂y)(x, L). We notice that, for the
values of parameters used in the model, the corrective terms in
Eq. (14) are much smaller than the original expression (13). We
verified that this procedure essentially removes numerical prob-
lems related to the fulfilment of periodicity. From now on, the ex-
pression of the equilibrium pressure will be given by Pcorr(x, y),
even though we continue to indicate it by P0(x, y) to simplify
the notation. A similar procedure was used in Vásconez et al.
(2015).

The magnetic field is obtained from Equation (12) as a func-
tion of P0:

B0(x, y) =
√

B2
ext + 2Pext − 2P0(x, y). (19)
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Finally, the equilibrium density is proportional to P0(x, y) ac-
cording to:

ρ0(x, y) =
2P0(x, y)
βT0

(20)

In particular, it is Pext = βρextT0/2 and Pint = βρintT0/2.
To completely define the equilibrium model, we have to

specify the values of parameters ρext, ρint, Bext, and T0. We used
the values: ρext = Bext = T0 = 1, and ρint = 2 so that the density
inside the flux tube is assumed to be a factor 2 larger than the
external density. For β = 0.05, this gives the values Pext = 0.025
and Pint = 0.05 for the plasma pressure outside and inside the
flux tube, respectively. Another relevant quantity is the Alfvén
velocity, which is defined by cA(x, y) = B0(x, y)/

√
ρ0(x, y) in the

code units, and varies perpedicularly to B0
Fig. 1 shows 1D profiles of the equilibrium quantities,

B0(L/2, y), cA(L/2, y), P0(L/2, y), and ρ0(L/2, y) as functions of
y. Those profiles are taken along a line that crosses the flux tube
through the symmetry axis. The variations of density and pres-
sure across the flux tube are clearly visible. Due to the low value
of β, magnetic pressure dominates plasma pressure, and the mag-
netic field profile is nearly constant, though B0 is slightly less
intense inside the flux tube. The Alfvén velocity inside the flux
tube is lower than outside by a ∼ 0.7 factor. This variation is at
the base of the phase-mixing phenomenon.

Finally, we notice that the unit time (in code units) corre-
sponds to the Alfvén time dFT /(πcA,ext) = 1, where dFT = π is of
the order of the flux tube diameter (Fig. 1).

2.4. Alfvénic torsional wave perturbation

The initial perturbation considered at first is a torsional Alfvén
wave. This wave is polarized in the azimuthal direction with
respect to the flux tube axis. We define the azimuthal angle
θ = tan−1 [

(y − y0)/(x − x0)
]

and the corresponding unit vector
θ̂ = − sin θ x̂ + cos θ ŷ. The perturbation involves only the trans-
verse components of the magnetic and velocity fields. The mag-
netic field perturbation reads

δBAw = A1 f (r) cos(kzz)θ̂ (21)

where the superscript "Aw" indicates quantities relative to the
torsional Alfvén wave, A1 is a parameter used to fix the ampli-
tude of the perturbation, kz = 2π/(ΛL) represents the wavevector
in the parallel z direction, and f (r) is a function defining the ra-
dial profile of the perturbation. In particular, we choose f (r) as a
tukey window function, that has the form:

f (r) =
1
2

[
1 − cos

(
2r
a

)]
0 < r < aπ/2 , (22a)

f (r) = 1 aπ/2 ≤ r ≤ π/2 , (22b)

with a = 0.6 and f (π − r) = f (r) for r < π/2. This function
guarantees that the perturbation smoothly goes to zero at the do-
main’s edge and on the loop axis r = 0. We notice that the con-
sidered torsional wave has a parallel wavelength that coincides
with the parallel domain size: λ|| = ΛL and does not depend on
the azimuthal angle θ, i.e., it is a m = 0 mode. The magnetic field
perturbation can be expressed in terms of Cartesian components
in the form:

δBAw = δBAw
x x̂ + δBAw

y ŷ = A1 f (r) cos(kzz) (− sin θx̂ + cos θŷ)
(23)

Fig. 2. 1D cut representing the components δBy and δvy as functions
of x, for the single Alfvén wave perturbation. The section is computed
along a straight line parallel to the x axis, at y = L/2 and z = ΛL/2.

The initial perturbation is an Alfvén wave propagating in the
positive z direction. Therefore, the velocity field has the form:

δvAw
x,y (x, y) = −

cA(r)
B0(r)

δBAw
x,y (x, y) = −

δBAw
x,y (x, y)√
ρ0(r)

, (24)

Fig. 2 shows 1D profiles of the δBAw
y (x, L/2) and δvAw

y (x, L/2)
components taken along a line that crosses the flux tube axis
parallel to the x axis (in Fig. 2 we set A1 = 1). Moreover,
a 2D plot of δBAw

y in a plane perpendicular to B0 is repre-
sented in the left panel of Fig. 3. Both magnetic field and ve-
locity perturbations are mainly localized across the shear region,
but they are also present in the remaining part of the domain,
compatible with the Cartesian geometry of D. The value of the
parameter A1 is determined by imposing that the RMS value
of the initial magnetic field perturbation is unitary: δB⊥,rms ≡√
⟨(Bx − ⟨Bx⟩)2 + (By − ⟨By⟩)2⟩ = 1, where ⟨...⟩ indicates a vol-

ume average. The actual RMS in the production runs is obtained
by multiplying the perturbed field by a specific value depend-
ing on the run. The perturbation does not affect the remaining
physical quantities: δρ = δvz = δBz = δT = 0.

Eqs. (23) and (24) correspond to a single Alfvén wave prop-
agating along the background magnetic field. However, we will
also consider the case of a standing Alfvén wave. This can be
obtained starting from an initial condition where the magnetic
field perturbation has the same form (23), but the velocity per-
turbation is initially set to zero. This situation corresponds to
two counter-propagating Alfvén waves initially having oppo-
site velocity fields that cancel each other. While the propagat-
ing wave perturbation (denoted by "Pw", propagating wave) in-
volves both magnetic and kinetic energy (that are equal for an
Alfvén wave), the standing wave perturbation (denoted by "Sw",
standing waves) initially involves only magnetic energy. On the
other hand, for the sake of comparison, it is appropriate that the
two kinds of perturbations have the same amount of fluctuating
energy. This condition is satisfied by choosing the parameter A1

such that ASw
1 =

√
2 APw

1 .

2.5. Turbulent perturbation

Another form of initial perturbation considered here corresponds
to a turbulent perturbation. The corresponding magnetic field
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δBturb and velocity δvturb perturbations are written as a superposi-
tion of transverse Fourier modes, each polarized in the xy–plane
and characterized by a wavevector k = (kx, ky, kz). Both δBturb

and δvturb are divergence-free, the latter condition to ensure that
the initial perturbation is non-compressive, as for Alfvénic per-
turbations. We describe a procedure to construct δBturb and δvturb

with the aforementioned characteristics.
To comply with the divergence-free condition, the turbulent

magnetic perturbation is expressed as δBturb = ∇× A, with A the
corresponding vector potential. Since we are interested in fluc-
tuations polarized in the direction perpendicular to B0, we chose
a vector potential having the form A = A(x, y, z) = Ax(z)x̂ +
Ay(z)ŷ+Az(x, y, z)) ẑ, in which the Ax and Ay components account
for modes with k parallel to B0 and the Az component accounts
for oblique and perpendicular modes. Periodicity allows us to
write the vector potential in terms of a Fourier series as Ax =∑

kz
Âx(kz)eikzz, Ay =

∑
kz

Ây(kz)eikzz, Az =
∑

kx,ky,kz
Âz(kx, ky)eik·x,

where the wavevector is k = [(2π/L)nx, (2π/L)ny, (2π/ΛL)nz],
nx, ny and nz are integers, and (nx, ny, nz) is the wavenumber. The
corresponding magnetic field has the form:

δBturb
x =

∑
kx,ky,kz

ikyÂz(k)eik·x −
∑

kz

ikzÂy(kz)eikzz

δBturb
y =

∑
kz

ikzÂx(kz)eikzz −
∑

kx,ky,kz

ikxÂz(k)eik·x

δBturb
z = 0,

The Fourier coefficients Âx, Ây, Âz are chosen such that the spec-
trum of the initial fluctuations is isotropic in the wavenumber

space. In particular, for
√

n2
x + n2

y + n2
z ≤ nmax, it is |Âx(kz)| =

|Ây(kz)| ∝ |kz|
−a and |Âz(kx, ky)| ∝ k−a

⊥ , with k⊥ =
√

k2
x + k2

y .

Otherwise, for
√

n2
x + n2

y + n2
z > nmax it is Âx(kz) = Ây(kz) =

Âz(kx, ky) = 0. We used the values a = 1.5 and nmax = 3, giving
an initial perturbation localized at the largest spatial scales. The
phases of complex Fourier coefficients Âx, Ây, Âz are randomly
chosen.

The same procedure is applied to obtain the velocity fluc-
tuation δvturb. However, the phases of the velocity Fourier co-
efficients are chosen differently with respect to the magnetic
field. In particular, phases are chosen such as the cross he-
licity Hc =

∫
δvturb · δBturb dV of the initial perturbation is

small (∼ 1%) with respect to the fluctuating magnetic energy
EM =

∫ (
δBturb

)2
/2 dV . This condition is necessary in order to

trigger a nonlinear cascade, at least in the case of a uniform back-
ground. Finally, as for the Alfvénic torsional wave, both mag-
netic and velocity fluctuation are normalized to their respective
RMS values.

The pattern of the above-described turbulent perturbation is
represented in the upper panel of Fig. 6, where a 3D visualization
of the By component at the initial time t = 0 is drawn in the case
Λ = 4.

3. Numerical results

In this section, we present results from numerical simulations.
In order to quantify the evolution of the dissipation rate in our
model, we monitored the evolution of the quadratic quantity W =
⟨J2⟩ + ⟨ω2⟩ in time, where J = ∇× B and ω = ∇× v are the rms
values of the current density and vorticity, respectively. For each

Fig. 3. 2D perpendicular section of the By component for the Alfvén
waves evolution at times t = 0 (left), t = 150 (middle), and t = 300
(right). Here we used a perturbation amplitude A = 10−2, a hyper-
dissipation coefficient η = 10−8, and an aspect ratio Λ = 4 (Run 15).

Table 1. Table of simulations. From left to right are reported: a num-
ber identifying the Run, the initial perturbation type, the amplitude A,
the number of mesh points in the perpendicular and parallel directions,
the aspect ratio Λ, the hyper-dissipative coefficient η, and the param-
eter α, when appropriate. For all the simulations, we used a plasma-
β = 5× 10−2. In the second column, "IEq" and "HEq" indicate the inho-
mogeneous or homogeneous equilibrium, respectively, "Pw" and "Sw"
indicate the propagating and the standing Alfvén wave, respectively, and
"Turb" the turbulent perturbation. All runs are 3D.

Run IC type A N⊥ N∥ Λ η α
1 IEq+Pw 0.02 64 64 1 5 × 10−6 -
2 IEq+Pw 0.05 64 64 1 5 × 10−6 -
3 IEq+Pw 0.1 64 64 1 5 × 10−6 -
4 IEq+Pw 0.2 64 64 1 5 × 10−6 -
5 IEq+Pw 0.02 64 64 2 5 × 10−6 -
6 IEq+Pw 0.02 64 64 3 5 × 10−6 -
7 IEq+Pw 0.02 64 64 4 5 × 10−6 -
8 IEq+Pw 0.02 64 64 5 5 × 10−6 -
9 IEq+Pw 0.02 64 64 6 5 × 10−6 -

10 IEq+Pw 0.02 64 64 7 5 × 10−6 -
11 IEq+Pw 0.02 64 64 8 5 × 10−6 -
12 IEq+Pw 0.02 64 64 9 5 × 10−6 -
13 IEq+Pw 0.02 64 64 10 5 × 10−6 -
14 HEq+Turb 0.01 512 16 4 10−8 -
15 IEq+Pw 0.01 512 16 4 10−8 0.0
16 IEq+Pw+Turb 0.01 512 16 4 10−8 0.23
17 IEq+Pw+Turb 0.01 512 16 4 10−8 0.5
18 IEq+Pw+Turb 0.01 512 16 4 10−8 0.66
19 IEq+Pw+Turb 0.01 512 16 4 10−8 0.83
20 IEq+Pw+Turb 0.01 512 16 4 10−8 1.0
21 IEq+Sw 0.01 512 16 4 10−8 0.0
22 IEq+Sw+Turb 0.01 512 16 4 10−8 0.23
23 IEq+Sw+Turb 0.01 512 16 4 10−8 0.5
24 IEq+Sw+Turb 0.01 512 16 4 10−8 0.66
25 IEq+Sw+Turb 0.01 512 16 4 10−8 0.83
26 IEq+Sw+Turb 0.01 512 16 4 10−8 1.0

run, we define the dissipation time td as the time that corresponds
to the maximum dissipation rate, namely Wmax = W(t = td).
To properly quantify the value of td, we carried out all simula-
tions up to a time tfinal when W becomes definitely smaller than
Wmax. Each run has been performed using the same value η for
the hyper-dissipative coefficients: η = ν4 = η4 = χ4, even though
η can be different in different runs. In the following, we will re-
fer to the fields in the xy−plane with the subscript “ ⊥ ”, while
“ ∥ ” represents the parallel component to the z−axis. We also re-
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Fig. 4. Time history of W/A2 for the propagating Alfvén wave, with
different values of amplitude A, namely for Runs 1 – 4.

mind that the Alfvén time is unitary in our normalisation units.
All the simulations performed are summarized in table 1 where
we report the values of various parameters.

3.1. Torsional Alfvén wave

We performed a series of runs to characterize the time evolution
of the torsional Alfvén wave propagating in the inhomogeneous
equilibrium, described in Sect.s 2.3 and 2.4, respectively. The
main purpose is to verify the fulfilment of scaling laws charac-
terizing phase mixing by the numerical model. We initialize the
fields as:

B∥ = B0(x, y), (25)

B⊥ = A δBAw
⊥ (x, y, z), (26)

v∥ = 0, (27)

v⊥ = A δvAw
⊥ (x, y, z), (28)

ρ = ρ0(x, y). (29)

Due to the normalization of δBAw
⊥ described in Section 2.4, the

parameter A represents the rms amplitude of the fluctuating mag-
netic field.

In Fig. 3 we report a 2D perpendicular section at z = ΛL/2
of the By component for the high-resolution Run 15, where only
the torsional wave is initially present (Table 1), at time t = 0
(left), t = 150 (middle), and t = 300 (right). The last time ap-
proximately corresponds to the dissipation time td for this test.
As the simulation proceeds, phase mixing occurs, generating in-
creasingly smaller length scales in the radial direction (across
the background magnetic field). This gradually increases W, un-
til dissipative effects due to hyper-dissipation terms come into
play, eroding the fluctuation and reducing W. This happens all
across the boundary of the flux tube, where the inhomogeneity
is localized.

In order to quantitatively characterize the phenomenon of
phase mixing, we can derive an estimation for the dissipative
time td in numerical runs. At variance with Eq. (3) where td has
been expressed in terms of the dissipative scale ℓd, in the numeri-
cal model, such a scale is not fixed a priori. Instead, dissipation is
determined by the hyper-dissipative terms included in the model.
In particular, we can define the characteristic time tη associated
with hyper-dissipation by balancing the term ∂A/∂t with η∇4 A

in Eq. (10) (or, equivalently, balancing ∂v/∂t with η∇4v in Eq.
(9)). This gives

tη(k⊥) ∼
1
ηk4
⊥

. (30)

The dynamical time associated with phase mixing is given by
the expression (2) where, in our case, k||0 = 2π/(ΛL) = Λ−1.
This gives:

tPM(k⊥) ∼ k⊥Λ
(

dcA

dr

)−1

(31)

Dissipation becomes effective at a wavevector k⊥d where tPM(k⊥)
becomes of the order of tη(k⊥). Therefore, matching Eq.s (30)
and (31) we derive:

k⊥d ∼
1

(ηΛ)1/5

(
dcA

dr

)1/5

(32)

Inserting this expression into Eq. (31) we derive an estimation
for the dissipative time for the torsional Alfvén wave case:

td ∼
(

dcA

dr

)−4/5

η−1/5Λ4/5, (33)

Moreover, estimating the current density as J ∼ k⊥B⊥, and as-
suming that phase mixing does not substantially modify the ini-
tial wave amplitude A as long as k⊥ ≲ k⊥d, we can derive an
estimation for the maximum dissipation rate:

J2
max ∼ A2

(
1
ηΛ

dcA

dr

)2/5

. (34)

Eqs. (33) and (34) can be compared with the results of nu-
merical runs in the case of the torsional Alfvén wave. In partic-
ular, the dependence of the dissipation on the wave amplitude
has been studied by performing some numerical tests (Run 1 to
Run 4) where different values of A have been used, varying A
over one order of magnitude: A = 0.02, 0.05, 0.1, 0.2. Since an
high resolution is not required for these runs, we used a grid
with N⊥ = N|| = 64 mesh points for each direction. The domain
D is a cube (Λ = 1) of size L = 2π. Due to the low number of
gridpoints, the hyper-dissipative coefficients have the relatively
high value η = 5 × 10−6. In Fig. 4, we report the time history
of W/A2 for those runs (Run 1-4). It appears that the four curves
are almost superposed, indicating that the dissipation rate W is
proportional to A2, in accordance with Eq. (34). Moreover, the
dissipative time td, corresponding to the time of maximum W, is
independent of the wave amplitude A, as predicted by Eq. (33).

In Fig. 4 the normalized profile W(t)/A2 corresponding to
the lowest amplitude A = 0.02 is slightly higher than the others.
This small discrepancy can be attributed to the power developed
by the dissipation of the current associated with the equilibrium
magnetic field B0(x, y). Of course, for low values of the wave
amplitude A this effect is becomes more visible in comparison
with wave dissipation rate. However, even for low wave ampli-
tudes the dissipation of the equilibrium current remains suffi-
ciently small to be ignored. We also observe that the dissipation
of the equilibrium current is completely negligible in the high-
resolution runs (Run 14–26) described in Sec.s 3.2–3.4, where a
much lower value for the dissipative coefficient η has been used.

Another set of low-resolution runs has been performed,
where the aspect ratioΛ of the spatial domain has been increased
from Λ = 1 up to Λ = 10. For all those runs, we set an amplitude
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Fig. 5. Dissipation time td for different aspect ratio, namelyΛ ∈ [1, 10].
The dash-dot line represents a power law with slope 4/5, according to
our estimation in equation (33). These simulations are reported in table
1 as Run 1 and Run 5–13.

A = 0.02, the coefficient η = 5×10−6, and we used N = 64 mesh
points for each direction. These simulations are reported in table
1 as Run 1 and Run 5 – 13. For each run, we calculated the dissi-
pative time td as the time of maximum W. In Fig. 5, we report the
dissipative time as a function of the aspect ratio Λ (dotted line).
It appears that the dissipative time follows the law td ∝ Λ4/5

(dotted-dashed line) reasonably well, in accordance with what is
predicted by Eq. (33).

A closer examination of Fig. 5 reveals that the dissipative
time increases with Λ slightly faster than the prediction td ∝
Λ4/5. Such a small discrepancy can be explained by taking into
account that Eq. (33) has been derived assuming a radial profile
of the Alfvén velocity that remains unchanged during the wave
evolution. Instead, dissipation also affects the equilibrium mag-
netic field slightly reducing the gradient of the Alfvén velocity in
time, as we explicitly verified. According to Eq. (33), a decrease
of dcA/dr corresponds to an increase of td. This effect is more
pronounced when td is larger (i.e., for larger Λ) since, in this
case, dissipation has more time to smooth the profile of cA(r).
This corresponds to a deviation from the scaling law td ∝ Λ4/5

that is larger for larger Λ.
Summarizing, the above results show that, in the configura-

tion considered in our model, the time evolution of the torsional
Alfvén wave is fully dominated by phase mixing, and the corre-
sponding properties are well reproduced by the numerical model.
On the contrary, no relevant nonlinear effects have been observed
on transverse fluctuations characterizing this wave, even for rel-
atively large values of the wave amplitude (A = 0.2).

3.2. Turbulence in homogeneous background

In this section, we describe the time evolution of the turbulent
perturbation, defined in Sec. 2.5, in a homogeneous background
(Run 14). Though the main focus of this paper is on inhomoge-
neous structures, here, the main purpose is to fix a reference case.
In Run 14, we used a low value of the hyper-dissipative coeffi-
cient (η = 10−8) and a high spatial resolution in the perpendic-
ular direction, trying to obtain a spectrum with a wide range of
scales compatible with numerical limitations. The results of Run
14 will be used in Sect. 3.3 for a comparison with the behavior of
waves and turbulence in the inhomogeneous equilibrium (Runs
15-26). Therefore, in Run 14 we use the same values for the pa-

Fig. 6. 3D visualization of the By component at times t = 0 (top) and
t = td (bottom), for Run 14.

rameters A,Λ, and η as in Runs 15–26. In particular, we set a low
value for the fluctuation amplitude (δB/B0 ≃ A = 0.01). Such a
choice will allow us to satisfy the condition (7) for Runs 15–26
of Section 3.3. Of course, lower values for A would better fulfil
condition (7), but this would be exceedingly costly due to long
simulation times. We also observe that a situation characterized
by small fluctuation amplitude δB/B0 and low dissipation can be
considered to be more representative of the corona.

In Run 14, physical quantities have been initialized in the fol-
lowing way: B|| = B0 = 1, ρ = ρ0 ≃ 1.21, which is the average
value of ρ0 in the inhmogeneous cases, and cA ≃ 0.91. Moreover,
B⊥ = A δBturb

⊥ , v⊥ = A δvturb
⊥ and v|| = 0, where the turbulent per-

turbations δBturb
⊥ and δvturb

⊥ have been specified in Sect. 2.5. A
3D visualization of By corresponding to the above initial condi-
tion is plotted in Fig. 6, upper panel. It can be observed that the
typical transverse scale associated with fluctuations is ℓ⊥0 ∼ 1
(in code units).

In Fig. 7, the quantity W is plotted as a function of time for
Run 14. The value td ≃ 600 can be derived for the dissipative
time in this case. Using such a value in Eq. 5, as well as cA0 = 1,
ℓ⊥0 ∼ 1 and δB(ℓ⊥0)/B0 = 0.01, we obtain Γ ≃ 6. This value
will be used in Sect. 3.3 to identify the regime of turbulence
in an inhomogeneous background with respect to the condition
(7). In Fig. 6, lower panel, the By component is represented at
the time t = td. Comparing with the image at the initial time
(upper panel), the presence of structures at small scales is clearly
visible at t = td. Moreover, such structures are dominated by
perpendicular wavevectors, as is expected for turbulence with a
strong background magnetic field.
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Fig. 7. Time history of W for the turbulence in a homogeneous back-
ground with low amplitude A and low hyper-dissipative coefficient η
(Run 14).

.

3.3. Phase mixing and turbulence in an inhomogeneous
background

In this section, we aim to investigate the synergy between phase
mixing and nonlinear effects in the generation of small scales
within an inhomogeneous equilibrium, like the flux tube we con-
sidered. As previously seen, the evolution of the torsional Alfvén
wave can be completely described in terms of phase mixing.
However, a fluctuation exactly corresponding to an Alfvén tor-
sional wave is unlikely to be present in a loop. More realistically,
one can think of a torsional wave that is more or less distorted.
Such a distortion can be represented as a superposed turbulent
component on the wave. In this case, important points are inves-
tigating whether phase mixing is still effective for a distorted tor-
sional wave and how dissipation depends on the relative ampli-
tude of the turbulent component with respect to the wave. More-
over, considering the turbulent component itself, the inhomo-
geneity of the background structure acting on it could produce
small scales through a mechanism similar to phase mixing. In
this case, both phase mixing and nonlinear cascade should con-
tribute to the generation of small scales. This combined mech-
anism should work even in a case where the amplitude of the
turbulent component is comparable with or larger than the tor-
sional wave.

The above speculations have been investigated by consider-
ing a perturbation given by the superposition of a turbulent fluc-
tuation on a torsional Alfvén wave and making the whole pertur-
bation to evolve in the inhomogeneous equilibrium. Therefore,
the initial condition is given by:

B∥ = B0(x, y), (35)

B⊥ = A δBWT
⊥ (x, y, z)

= A
[
(1 − α) δBAw

⊥ (x, y, z) + αδBturb
⊥ (x, y, z)

]
, (36)

v∥ = 0, (37)

v⊥ = A δvWT
⊥ (x, y, z)

= A
[
(1 − α) δvAw

⊥ (x, y, z) + αδvturb
⊥ (x, y, z)

]
, (38)

ρ = ρ0(x, y), (39)

where α ∈ [0, 1] is a free parameter that allows us to tune the
amount of turbulence superposed on the torsional wave. Here,
"WT" stands for "wave+turbulence". For each value of α, mag-

netic field δBWT
⊥ and velocity δvWT

⊥ perturbations are normalized
to the rms value of δBWT

⊥ . Therefore, the quantity A gives the am-
plitude of the whole perturbation. The case α = 0 corresponds to
a purely torsional Alfvén wave while increasing α the turbulence
level increases. We performed direct numerical tests by varying
α in two cases: (i) propagating Alfvén wave plus turbulence and
(ii) standing Alfvén wave plus turbulence. The forms used for
propagating and standing Alfvén waves have been specified in
Sect. 2.4. For all the simulations described in the Sect.s 3.3.1
and 3.3.2 we used a low perturbation amplitude A = 0.01, an
aspect ratio Λ = 4, a low hyper-dissipative coefficient η = 10−8,
and N⊥ = 512, N∥ = 16 mesh points. As already remarked,
these values are the same as those used in the low dissipative,
low-amplitude Run 14, where we considered only a turbulent
perturbation in a homogeneous background.

An important point is checking whether the regime of pa-
rameters we are considering (for the turbulence-dominated case
α ∼ 1) is consistent with the inequality (7). As discussed in
Sect. 2.1, if the inequality (7) is satisfied by the initial condi-
tion, then phase mixing dominates during the initial stage and
nonlinear cascade during a later stage. In the present case we
estimate terms in the inequality (7) by using the following val-
ues: dcA/dr ≃ 0.3 (Fig. 1); cA ≃ 1; L|| = ΛL = 8π; ℓ⊥0 ∼ 1
and Γ ≃ 6 (Sect. 3.2). This gives the value ≃ 0.07 for the R.H.S
of (7), while the L.H.S. is δB/B0 = A = 0.01. Therefore, the
choice of parameters corresponds to a regime identified by the
condition (7), when α ∼ 1. The same regime holds even more
for lower values of α, since in cases when the torsional wave
has a larger weight with respect to the turbulent component, the
nonlinear cascade should play a less relevant role with respect to
phase mixing.

3.3.1. Propagating Alfvén wave plus turbulence

The case of a single propagating torsional Alfvén wave plus tur-
bulence has been considered in Runs 15–20, where the value of
the parameter α has been varied between α = 0 and α = 1, thus
changing the relative weight of the two components.

The time history of the dissipation rate W for these cases is
reported in the top panel of figure 8. Each curve corresponds to
a different value of α. It can be observed that the dissipative time
td decreases with increasing α. In particular, td is reduced by a
factor ≃ 2 going from α = 0 (torsional wave only) to α = 1
(turbulence only). As expected, the presence of a turbulent com-
ponent superposed on the torsional Alfvén wave does not inhibit
the formation of small scales. On the contrary, the larger the tur-
bulent component the more efficient the dissipation is. Indeed,
as we shall see, the Alfvén wave is still subject to phase mixing
even when it is distorted by a turbulent component.

What is more, the fastest dissipation is found when the turbu-
lent component dominates (α ≃ 1). In that case the perturbation
simultaneously undergoes phase mixing and nonlinear cascade.
The combined effect of these two mechanisms leads to the most
efficient dissipation. The case of Run 20, corresponding to α = 1
(Fig. 8, upper panel), can be compared with that of a turbulent
perturbation in a homogeneous background (Run 14), which is
illustrated in Fig. 7. Both those cases correspond to a pertur-
bation with the same amplitude and the same hyper-dissipative
coefficient, the only difference being in the background (inho-
mogeneous in Run 20 and homogeneous in Run 14). A compari-
son shows that the presence of inhomogeneity in the background
structure strongly reduces the dissipative time. This clearly il-
lustrates how phase mixing and nonlinear effects jointly act to
promote dissipation.
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Fig. 8. Time history of W for the case of a single Alfvén wave (top
panel for Runs 15–20) and two Alfvén waves (bottom panel for Runs
21–26), and different values of α. One can notice that the dissipative
time decreases for increasing α.

A further effect that accelerates dissipation is related to mod-
ifications of the background density induced by the velocity field
δv⊥ associated with fluctuations. In the case of a pure torsional
wave it is δv⊥ = δv⊥(r, z)θ̂; moreover, the background density
is initially is independent of θ: ρ0 = ρ0(r). In this case it is
∇ · (ρ0δv⊥) = 0 and Eq. (8) implies ∂ρ0/∂t = 0. Therefore, ve-
locity fluctuations do not modify the background density, and
the cylindrical symmetry of the equilibrium is preserved. In con-
trast, when the turbulent component is present in the velocity
fluctuations (α , 0) the cylindrical symmetry is violated and
the velocity δv⊥ can modify the background density structure. In
spite of the small amplitude of fluctuations (A = 0.01), this effect
accumulates, and deformations in the density structure become
more and more relevant with increasing time.

In Figure 9 we report a 3D visualization of the density field
at times t = 200 (top), t = 450 (center), and t = 700 (bottom),
for the Run 20 where only the turbulent component is present in
the fluctuations (α = 1). It can be seen how the initial cylindrical
symmetry is gradually lost, and increasingly larger deformations
are produced in the density until, at later times, the monolithic
structure of the loop is completely destroyed. Of course, this ef-
fect is stronger when the turbulent component dominates fluctua-
tions (α ∼ 1). Such effect is similar to as that reported in Magyar

Fig. 9. 3D visualization for the density field at time t = 200 (top), t =
450 (center), and t = 700 (bottom), for a case of a turbulent perturbation
propagating in the inhomogeneous equilibrium (α = 1, Run 20).

et al. (2017), where density initial inhomogenities are deformed
by wave propagation.

Another feature visible in Fig. 9 is the gradual formation of
small scales in the background density, transverse to B0, which
is driven by small-scale generation in the velocity perturbation
δv⊥. Small scales in the density correspond to small scales in
the spatial distribution of the Alfvén velocity cA(x, y). This leads
to the formation of regions where the Alfvén velocity gradient
is much larger than in the initial equilibrium. Since the phase-
mixing dynamical time is proportional to |∇cA|

−1 (Eq. 2), in those
regions, the generation of small scales proceeds with a rate larger
than at the initial time. This effect, which becomes more relevant
with increasing α, contributes to speeding up the dissipation.

However, deformations in the density structure are also ob-
served for lower values of α, though smaller than for α = 1.
We report a 2D section of the density field for the propagating
wave (left panel of Fig. 10) at z = L∥/2 and time t = 300. This
Figure refers to Run 16, where we used the value α = 0.23. In
this case, the percentage of turbulence in the initial perturbation
is not enough to completely destroy the loop, but it is able to
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Fig. 10. 2D perpendicular section of the density field (left panel) and
the By component (right panel) for the Run 16 at t ∼ td = 300 and
z = L∥/2. The simulation corresponds to a propagating Alfvén wave
with a moderate level of turbulence superposed (α = 0.23.).

generate relevant changes in the morphology of the background
density. In the right panel of the same figure, we report the By
field component at the same time and at the same value of z.
The simulation illustrated in Fig. 10 corresponds to a case of a
torsional Alfvén wave plus a moderate level of turbulence, and
can be then compared with Fig. 3 where the case α = 0 (Run
15) is illustrated. In Fig. 3 it is visible how phase mixing pro-
duces wavefronts in the form of perfect concentric shells. Dif-
ferently, for α = 0.23 (Fig. 10) the cylindrical symmetry is lost;
nevertheless, phase mixing still takes place, locally generating
small scales in the form of closely packed wavefronts. The wave
vector associated with those wavefronts is locally directed paral-
lel to the background density gradient. This shows that, even in
the presence of deformations in the density and wave patterns,
phase mixing proceeds with properties similar to what found in
the cylindrically symmetric configuration and that the presence
of turbulence makes dissipation more efficient.

3.3.2. Standing Alfvén wave plus turbulence

A coronal loop with a finite length L|| supports standing waves.
Torsional Alfvén waves are among the possible standing modes.
Therefore, in addition to the previous ones, we also performed
simulations of a standing torsional Alfvén wave (formed by
two counter-propagating waves) with a variable amount of tur-
bulence superposed on it. In order to make a comparison, we
adopted the same physical and numerical parameters used in the
runs of the propagating waves, except for the amplitude of the
initial magnetic perturbation that is greater by a factor

√
2. As

explained in Sect. 2.4, this choice ensures that the energy of the
standing wave is the same as the propagating wave. Different
tests have been performed with various values of the parameter
α; those runs are indicated as Run 21–26 in Table 1. We observe
that the case α = 1 described in Run 26 is coincident with that
of Run 20, since in both runs only the turbulent component is
present. Nevertheless, we indicate this same run with two dif-
ferent numbers to more easily indicate how results vary when
varying α in the propagating and standing wave cases.

The time evolution of the W is illustrated in the bottom panel
of figure 8 for this set of runs. Similar as in the propagating
wave case, in the present situation the dissipative time decreases
with increasing the relative turbulence level (increasing α). At
the same time, the maximum value of W decreases with increas-
ing α. For α ≳ 0.66 the time evolution of W becomes essentially
independent of α. Comparing the two panels of Fig. 8, it appears
that the time behavior of the dissipation rate W in the standing

Fig. 11. 2D perpendicular section of the density field (left panel) and
the By component (right panel) for the Run 22 at t ∼ td = 300 and
z = L∥/2. Here we evolve a standing Alfvén wave with a moderate level
of turbulence superposed (α = 0.23.).

wave cases is qualitatively similar as for the propagating wave,
though with some small differences.

In Fig. 11, we report a 2D section illustrating the density
profile (left panel) and the By component of the magnetic field
(right panel) at z = L∥/2 and t = 300, for Run 22 where a moder-
ate amount of turbulence (α = 0.23) is initially present. This can
be compared with the corresponding Run 15 (Fig. 10) relative to
a propagating wave case. The comparison shows net differences
in morphology. In particular, in the standing wave case, the flux
tube boundary appears to be fringed with curly filaments. Such
small-scale structures are generated by rolls related to the for-
mation of a KH instability that develops at the loop boundary
as a consequence of phase mixing of the standing Alfvén wave.
A similar phenomenon also takes place when an initial standing
kink mode couples with Alfvénic oscillations that undergo phase
mixing (see, e.g., Antolin et al. 2016). In our case, where a tor-
sional Alfvénic standing wave is considered, a certain amount of
turbulence (α , 0) must be present; otherwise, the KH instability
is not observed.

Similar as in the propagating wave case, we observe the for-
mation of packed wavefronts in the By magnetic field, located
across the loop boundary. Such wavefronts appear to be distorted
by the underlying irregular shape of the background density (left
panel of the same figure). Comparing with the corresponding
pattern obtained in Run 16 at the same time, we see that, in the
propagating wave case, By contains scales that are on average
smaller than in the standing wave case. This is in accordance
with the profiles of W shown in Fig. 8 for α = 0.23 in the two
cases. In fact, for t ∼ td the dissipation rate W for the propa-
gating wave is slightly larger than for the standing wave (orange
lines). In both cases, it can be seen that small scales generated by
phase mixing are localized across the region of the density gra-
dient, which corresponds to the location of the strongest Alfvén
velocity gradient.

To complement the comparison between the cases of prop-
agating and standing waves, we computed the perpendicular
power spectra of the magnetic field transverse components,
namely P(k⊥) = |B̂x(k⊥)|2 + |B̂y(k⊥)|2, where the hat refers to the
Fourier coefficients of the fields. Such spectra are calculated by
integrating the 3D Fourier spectra both on concentric 2D shells
located perpendicularly to the kz direction and along kz. The re-
sult is a spectrum that depends only on k⊥. In Fig. 13, we report
the magnetic field power spectra for Run 16 and for Run 22 as
a function of k⊥ and t ∼ td = 300. A spectrum proportional to
k−5/3
⊥ (black dashed line) is plotted for reference. It can be seen

that the two spectra at α = 0.23 are similar and both are less

Article number, page 12 of 16



C. Meringolo et al.: Joint action of phase mixing and nonlinear effects in MHD waves propagating in coronal loops

Fig. 12. xy−plane for the density field (left panel) and the By component
(right panel) for the Run 20 at t ∼ td = 200 and z = L∥/2. Here we used
the maximum level of relative turbulence (α = 1.0).

steep than a Kolmogorov spectrum ∝ k−5/3
⊥ . Indeed, for such a

moderate value of α the dynamics is dominated by phase mix-
ing instead of by a turbulent cascade. While in a turbulence the
amplitude of fluctuations decreases with increasing the wavevec-
tor, phase mixing increases the perturbation wavevector keeping
the amplitude unchanged, at least in the region where the back-
ground inhomogeneity is located. As a result, the Fourier spectra
calculated over the entire spatial domain for Runs 16 and 22 are
shallower than a Kolmogorov spectrum. At the smallest scales
(k⊥ ≳ 30), the spectrum of the standing wave case have more en-
ergy than for the propagating wave. However, these differences
are at energies too small to be appreciated in the perturbation
morphology.

To conclude, from the point of view of wave dissipation,
there are no relevant differences between the cases of propagat-
ing and standing waves. In particular, the presence of KH rolls
that characterize standing waves does not particularly enhance
dissipation, at least in the case of a distorted torsional wave we
are considering.

3.4. Turbulence in inhomogeneous background

The case where the initial perturbation is formed only by the
turbulent component (α = 1) has been considered in Run 20.
Results are illustrated in Fig. 12, where the density ρ and the
By component of the magnetic field are reported, at t = td =
200, similar as in Fig.s 10-11. Even in this case, the pattern of
By(x, y) is reminiscent of what is generated by phase mixing,
namely, small-scale structures appear, formed by closely packed
wavefronts. Those structures are essentially localized in regions
of inhomogeneous density. Therefore, the coupling between the
turbulent perturbation and the inhomogeneous background leads
to a phenomenon that is qualitatively similar to phase mixing.

However, in Fig. 12 some regions are visible (see, e.g., the
area 1 ≲ x ≲ 3, 1 ≲ y ≲ 3) where the wavevector distribution
appears to be more isotropic, also in comparison with cases char-
acterized by lower values of α (e.g., α = 0.23, Fig. 10). Those
are the regions where the smallest scales are localized. This fea-
ture can be interpreted as a manifestation of a nonlinear cascade
that forms locally following the development of phase mixing.
We also observe that in those regions, the density structure is
particularly distorted and presents a large gradient (Fig. 12, left
panel). This contributes to the formation of small scales in the
perturbation.

In Fig. 13 the spectrum of magnetic fluctuations P(k⊥) is
plotted for the case of turbulence in the flux tube (Run 20, green
curve), as well as in the case of turbulence in an homogeneous

Fig. 13. B2
⊥(k⊥) power spectra for different cases: the propagating

Alfvén wave (Run 16), the standing Alfvén wave (Run 22), the tur-
bulence in homogeneous background (Run 14), and the turbulence in
inhomogeneous background (Run 20). All the spectra are reported at
the dissipative time of the corresponding run. We also report a k−5/3

slope for comparison.

background (Run 14, black curve). All the spectra plotted in Fig.
13 are calculated at the dissipative time of the corresponding run,
namely the time at which W is maximum, in order to have a spec-
trum as developed as possible. In the case of Run 14 we observe
the presence of an inertial range that approximately follows the
slope ∝ k−5/3, indicating that the spectrum has been formed by
the nonlinear cascade. In contrast, in the case of turbulence in
the flux tube (Run 20) a shallower spectrum is observed that is
close to the spectra of phase-mixing-dominated Runs 16 and 22.
This further demonstrate that, when the turbulence evolve in the
inhomogeneous flux tube, phase-mixing plays a relevant role in
the generation of small scales and dissipation. At small scales
k⊥ > 10 − 20 the spectrum of Run 20 becomes less steep than
those of Runs 16 and 22, giving origin to a more efficient dissi-
pation. This feature could be interpreted as a sign of other phe-
nomena (nonlinear cascade, deformation of the background den-
sity) that cooperate with phase mixing in the generation of small
scales.

4. Summary and conclusions

In the present paper, we have investigated the interplay between
phase mixing and turbulence in generating small scales and con-
sequent wave dissipation in a simple model of a coronal loop.
Both effects tend to generate small scales transverse to the back-
ground magnetic field in Alfvénic fluctuations, and therefore,
they can jointly act to promote the dissipation of fluctuations.
We have considered a configuration where an initial torsional
Alfvén wave and a variable amount of turbulent Alfvénic trans-
verse fluctuations are present. We chose a torsional wave because
its time evolution is essentially determined by phase mixing,
which is one of the two mechanisms we are interested in inves-
tigating. There is observational evidence of torsional motions,
both in the photosphere (Brandt et al. 1988; Bonet et al. 2008,
2010) and in the chromosphere (Wedemeyer-Böhm & Rouppe
van der Voort 2009; Wedemeyer-Böhm et al. 2012; Tziotziou
et al. 2018; Dakanalis et al. 2022), which could induce torsional
waves in coronal loops (Jess et al. 2009).
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In this study, we used the COHMPA algorithm (Pezzi et al.
2023), which solves the 3D compressible MHD equations with
periodic boundary conditions. We considered an equilibrium
structure with a low β value, representing an overdense cylindri-
cal magnetic flux tube. The Alfvén speed gradient across the flux
tube boundary is responsible for the phase mixing of Alfvénic
perturbations. We characterized the time evolution of a pure tor-
sional Alfvén wave by varying parameters like wave amplitude
and parallel wavelength. We verified that the properties of the
dissipation rate in the numerical runs follow what can be pre-
dicted for the phase mixing to a good extent. However, the dy-
namical time associated with phase mixing increases with de-
creasing the spatial scale ℓ⊥ of perturbations, and it becomes
exceedingly long for realistic values of the dissipative scale in
the coronal plasma. In this respect, the turbulent cascade has the
advantage of moving the fluctuation energy down to small dissi-
pative scales in a time that is of the order of the large-scale non-
linear time. For that reason MHD turbulence has been consid-
ered in several coronal heating models (Nigro et al. 2004; Malara
et al. 2010; van Ballegooijen et al. 2017; Rappazzo et al. 2017;
Van Ballegooijen & Asgari-Targhi 2018). In addition, there are
indications of the presence of turbulent oscillations in the corona
(Banerjee et al. 1998; Singh et al. 2006; Hahn & Savin 2013,
2014; Morton et al. 2016, 2019).

A torsional wave propagating in a cylindrical flux tube repre-
sents a peculiar configuration that is completely independent of
the azimuthal coordinate θ. It is natural to ask to what extent the
phenomenon of phase mixing is related to such a particular sym-
metry and whether phase mixing is still present when the cylin-
drical symmetry is violated. In our simulations, we investigated
this question by distorting the pure torsional wave with the ad-
dition of a certain amount of turbulent perturbation. Our results
have shown that, for moderate amplitudes of the turbulent com-
ponent (small α), phase mixing persists even when the cylindri-
cal symmetry is not preserved: closely packed wave fronts form,
with a wave vector that is locally parallel to the density gradi-
ent in planes perpendicular to B0 (Fig. 10). In this respect, phase
mixing appears to be a robust mechanism active in configura-
tions more complex than what originally conceived (Heyvaerts
& Priest 1983).

We have also considered the case of standing Alfvén wave
with a variable amount of turbulence superposed on it. In this
case, the evolution of the background structure suggests that
rolls form at the flux tube boundary, probably generated by a
mechanism similar to a KH instability. This phenomenon has
been previously observed in another situation, where an initial
kink mode of an overdense flux tube couples with azimuthal
Alfvénic perturbations which, in turn, undergo phase mixing
(e.g., Antolin et al. 2016). In our case, where the initial pertur-
bation is a torsional Alfvén wave, this phenomenon requires a
certain amount of turbulent distortion in the initial perturbation
(α , 0), otherwise the cylindrical symmetry prevents the forma-
tion of the KH instability. Moreover, KH rolls are not observed
in the case of the propagating wave, even in the presence of a
turbulent component. The velocity perturbation pattern, with its
crests and troughs, must probably remain stationary to allow for
the development of the KH instability. However, comparing the
propagating and standing waves, we did not find relevant differ-
ences in the dissipative time for the two cases (Fig. 8). Therefore,
the presence of KH rolls seems not to enhance the efficiency of
small-scale formation, at least for the considered configuration.

Increasing the parameter α up to α = 1 the initial perturba-
tion becomes dominated by the turbulent component. The case
α = 1 corresponds to the shortest dissipative time. Even in such
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Fig. 14. Curves F(ρint/ρext, L||/ℓ⊥0, δB/B0, l⊥0/∆r) = 0 are represented
in the (ρint/ρext, L||/ℓ⊥0)-plane, for δB/B0 = 0.01 (purple line), δB/B0 =
0.02 (green line), and δB/B0 = 0.03 (orange line); each curve is cal-
culated for ℓ⊥0/∆r = 1. The portion of the plane below a given curve
corresponds to the regime defined by the condition (7) ("phase mixing
+ nonlinear cascade" regime), while the portion above the curve cor-
responds to the opposite condition ("nonlinear cascade" regime). The
black dot indicates the configuration considered in Run 20.

a case, where no torsional wave is initially present, the time evo-
lution of the turbulent perturbation reveals features qualitatively
similar to what is produced by phase mixing. Namely, closely
packed wavefronts localized at the flux tube boundary, with a
wave vector locally parallel to the density gradient (Fig. 12).
This indicates that a mechanism similar to phase mixing acts
– driven by transverse inhomogeneities in the Alfvén velocity –
even on a turbulent Alfvénic perturbation.

The case of a turbulent perturbation evolving in a flux tube
has been studied in a regime expressed by Eq. (7). In this case,
the amplitude of the initial turbulent perturbation is small enough
to make the nonlinear time – calculated for the large, energy-
containing scales – longer than the corresponding phase-mixing
dynamical time. In these conditions, the small-scale formation
within the turbulent perturbation is initially dominated by phase
mixing rather than by the nonlinear cascade. However, while
phase mixing proceeds, the perturbation energy moves toward
small scales, thus reducing the effective nonlinear time. Even-
tually, the nonlinear cascade becomes faster than phase mixing
and builds up small scales in a time that is essentially indepen-
dent of the dissipative coefficients. This aspect is relevant for the
coronal plasma, where such coefficients are expected to be very
small. In the considered regime, our simulations have shown that
the corresponding dissipative time is shorter than what is found
both in a pure phase mixing case (represented by the case α = 0)
and for a standard turbulent cascade (Run 14). Therefore, phase
mixing and turbulence work in a synergistic way, speeding up
the dissipation of the perturbation energy.

We refer to the above situation as a "phase mixing + non-
linear cascade" regime. The opposite case corresponds to a per-
turbation amplitude large enough to violate the condition (7). In
this case, the nonlinear time is shorter at large scales than the
phase-mixing dynamical time. Therefore, the nonlinear cascade
dominates the generation of small scales, with phase mixing
playing a minor role. We refer to this latter situation as a "non-
linear cascade" regime. To better illustrate these two regimes,
in the condition (7), we express the gradient of the Alfvén ve-
locity as dcA/dr ∼ ∆cA/∆r, where ∆cA = cA,ext − cA,int is the
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variation of the Alfvén velocity across the flux tube bound-
ary, which has a width ∆r, and cA,ext = Bext/

√
4πρext and

cA,int = Bint/
√

4πρint. Similarly, we estimate the Alfvén veloc-
ity as cA ∼ (cA,ext + cA,int)/2. For small values of the plasma β,
we can assume that Bext ≃ Bint ≃ B0. Therefore, it is

dcA

cA
∼ 2

√
ρint/ρext − 1√
ρint/ρext + 1

(40)

We can re-express the the condition (7) in terms of the dimen-
sionless ratios ρint/ρext, L||/ℓ⊥0, ℓ⊥0/∆r and δB/B0 characterizing
the problem, in the following form:

F
(
ρint

ρext
,

L||
ℓ⊥0
,
δB
B0
,

l⊥0

∆r

)
≡

L||
ℓ⊥0
− 2Γ

(√
ρint

ρext
− 1

)
(√
ρint

ρext
+ 1

)
(
ℓ⊥0

∆r

)
(
δB
B0

) < 0 (41)

The condition (41) is represented in Fig. 14 where lines corre-
sponding to F = 0 are plotted in the (ρint/ρext, L||/ℓ⊥0)-plane, for
three values of the ratio δB/B0 (δB/B0 = 0.01, 0.02, 0.03), and
choosing ℓ⊥0/∆r = 1 (as in our simulations). The portion of the
plane below each curve corresponds to configurations satisfying
the condition (41) (or, equivalently, condition (7)). Therefore, it
corresponds to the regime denoted as "phase mixing + nonlinear
cascade". This is verified for high values of the density contrast
ρint/ρext and for a longitudinal scale L|| that is not exceedingly
larger than the perpendicular scale ℓ⊥0. The configuration con-
sidered in Run 20 is indicated by a black dot, which falls into this
regime. The opposite regime ("nonlinear cascade") corresponds
to low-density contrast and/or high values for the ratio L||/ℓ⊥0.
In this case, phase mixing is slower than nonlinear couplings,
and the process of small-scale generation is dominated by the
nonlinear cascade. Since the nonlinear time scale decreases with
increasing the perturbation amplitude, the portion of the plane
corresponding to this latter regime becomes larger when the ra-
tio δB/B0 is increased. The above considerations indicate that
the effects of phase mixing in the dynamics and dissipation of
turbulent perturbations are more relevant in coronal loops with a
high-density contrast and short length.

Despite the small amplitude of the considered perturbations,
their effects on the background structures are not negligible
when considered for a sufficiently long time. In particular, the
initial density structure is gradually distorted, losing its cylindri-
cal symmetry. This effect becomes more relevant at large α, and
it can completely destroy the initial structure of the flux tube af-
ter a certain time. This leads to the formation of regions where
the gradient of the Alfvén velocity is particularly large. In those
regions, the generation of small scales in the perturbation pro-
ceeds with a rate higher than elsewhere (Fig. 12). This effect
further contributes to accelerate dissipation. Therefore, it can be
expected that such distortion of the background structure in a
coronal loop corresponds to locations of greater heating.

In previous work, it has been shown that multiple density
patches coupled with a large scale wave eventually result in a
turbulent like distribution of the density Magyar et al. (2017,
2019). Here, we have investigated the case of a single inhomo-
geneity perturbed by a spectrum fluctuations at large scale, fo-
cusing our interest on the interplay between generalized phase
mixing (following the definition by Magyar et al. (2017)) and
nonlinear effects.

In summary, phase mixing appears to be a robust mecha-
nism that works both in the less idealized case of a distorted

torsional wave and on a fully turbulent perturbation. We con-
clude that phase mixing, turbulent cascade, and perturbation-
induced background distortions jointly work to promote wave
dissipation. The present results are relevant for the solar corona,
where the plasma is characterized by extremely high Reynolds
and Lundquist numbers’ values. In that ambient, continuous in-
jection of fluctuations from photospheric motions is expected,
which demands forced rather than decaying simulations as those
presented in this paper. Such a study is left for future work.
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